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Abstract: One of the objectives in the orbit transfer problem is to achieve the optimal time of flight and the fuel 

consumption for the orbital transfer maneuver between two orbits. The transfer of satellites in too high orbits as 

geosynchronous one (geostationary), usually is achieved firstly by launching the satellite in Low Earth Orbit 

(LEO) (Parking orbit), then in elliptical transfer orbit and finally to the final orbit (Working orbit). 

In this paper, the Monte Carlo Simulation will be used to determine the optimum three tangent impulses 

maneuver (Bi-Elliptic Hohmann transfer) and determine the optimum One Tangent Burn transfer. From 

respective simulation, determine the optimum altitude of the transfer tangent point for Bi-Elliptic Hohmann 

transfer and determine the optimum angle true anomaly (υtrans) of the One Tangent Burn transfer to create 

minimum change of velocity and optimum time of flight for transfer and with minimum fuel consumption of this 

transfer. 
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1.   INTRODUCTION 

R. H. Goddard (1919) was one of the first researchers on the problem of optimal transfers of a spacecraft between two 

points who suggested optimal approximate solutions for the problem of sending a rocket to high altitudes with minimum 

fuel consumption [1].After that, there is the very important work done by Hohmann (1925) who solved the problem of 

minimum ∆V transfers between two circular coplanar orbits. His results are largely utilized nowadays as a first 

approximation of more complex models and it was considered the final solution of this problem until (1959) [1]. 

The Hohmann transfer would be generalized to the elliptic case (transfer between two coaxial elliptic orbits) by Marchal 

(1965) [6]. The Hohmann transfer is an elliptical orbit tangent to both circles. The perigee and apogee of the transfer 

ellipse are the radii of the inner and outer circles [1].Smith (1959) showed results for some other special cases, like 

coaxial and quasi-coaxial elliptic orbits, circular-elliptic orbits, two quasi-circular orbits [3]. 

To transfer from one orbit to another the velocity changes of the spacecraft are assumed to be done using propulsive 

systems, which occur instantaneously. Although it will take some time for the spacecraft to accelerate to the velocity of 

the new orbit, this assumption is reasonable when the burn time of the rocket is much smaller than the period of the orbit 

[4]. The Hohmann transfer is well known for the minimum of propellant mass used for satellite transfer into high orbits. 
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2.   DEFINITION OF THE PROBLEM 

The problem to be studied is that of optimal transfer of a satellite between a pair of coplanar elliptical orbits, employing 

three impulsive thrusts or one tangent burn. The objective of this problem is to modify the optimum orbit transfer of a 

given spacecraft. The problem is using Monte Carlo Simulation to the optimum altitude of the transfer tangent point for 

Bi-Elliptic Hohmann transfer and determine the optimum angle true anomaly (υtrans) of the One Tangent Burn transfer to 

create minimum change of velocity and optimum time of flight for transfer and with minimum fuel consumption of this 

transfer. 

3.    ELLIPTIC ORBIT 

The path of the satellite’s motion is an orbit. Generally, the orbits of communication satellites are ellipses laid on the 

orbital plane defined by space orbital parameters. These parameters (Kepler elements) determine the position of the 

orbital plane in space, the location of the orbit within orbital plane and finally the position of the satellite in the 

appropriate orbit [2], [8].  The elliptic orbit is determined by the semi‐major axis which defines the size of an orbit, and 

the eccentricity which defines the orbit’s shape. Orbits with no eccentricity are known as circular orbits. The elliptic orbit 

shaped as an ellipse, with a maximum extension from the Earth center at the apogee (ra) and the minimum at the perigee 

(rp) is presented in Figure (1). 

 

Figure (1): Major parameters of an elliptic orbit. 

The orbit’s eccentricity is defined as the ratio of difference to sum of apogee (ra) and perigee (rp) radii as, [2] ‐ [9]. 

  
     

     
      (1) 

Applying geometrical features of ellipse yield out the relations between semi major axis, apogee and perigee:  

              (2) 

              (3) 

             (4) 

Both,    and    are considered from the Earth’s center. Earth’s radius is 

           . Then, the altitudes (highs) of perigee and apogee are: 

             (5) 

             (6) 

Different methods are applied for satellite injection missions. Goal of these methods is to manage and control the satellite 

to safely reach the low Earth orbit, and then to the transfer elliptical orbit and finally the final orbit [4], [5]. The Hohmann 

transfer is considered as the most convenient. The specific orbit implementation depends on satellite’s injection velocity. 

The orbit implementation process on the best way is described in terms of the cosmic velocities. Based on Kepler’s laws, 

considering an elliptic orbit, the satellite’s velocity at the perigee and apogee point. 
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4.   COPLANAR IMPULSIVE MANEUVERS 

As the name implies, coplanar maneuvers don’t change the orbital plane, so the initial and final orbits lie in the same 

plane. These maneuvers can change the orbit’s size and shape (semi-major axis and eccentricity) and the location of the 

line of apsides (argument of perigee). Coplanar bums are either tangential or non-tangential. All of the historical work in 

coplanar transfers was restricted to circular orbits for which the velocity vector is always tangential to the orbit. 

Impulsive maneuvers are those in which brief firings of onboard rocket motors change the magnitude and direction of the 

velocity vector instantaneously. During an impulsive maneuver, the position of the spacecraft is considered to be fixed; 

only the velocity changes. 

The impulsive maneuver is an idealization by means of which we can avoid having to solve the equations of motion with 

the rocket thrust included. The idealization is satisfactory for those case s in which the position of the spacecraft changes 

only slightly during the time that the maneuvering rockets fire. This is true for high thrust rockets with burn times that are 

short compared with the coasting time of the vehicle. 

4.1 Three impulses tangent maneuver (Bi-Elliptic Hohmann transfer): 

To transfer from elliptical orbit (initial) to elliptical orbit (final) by Bi-Elliptic Hohmann transfer (three tangent impulses), 

we have two cases: 

a) The first pulse in perigee point of initial orbit (point A) and the second pulse in apogee point of transfer orbit (point C) 

and third pulse in perigee point of final orbit (point B), Figure (2). [7]. 

b) The first pulse in apogee point of initial orbit (point A) and the second pulse in apogee point of transfer orbit (point C) 

and third pulse in apogee point of final orbit (point B), Figure (3). [7]. 

For this method we know parameters of initial orbit and final orbit but we want to determine the altitude of the second 

point (C) which is applying the second tangent pulse on it and this is the main target of the paper to evaluate the optimum 

altitude for minimum total velocity for change orbits by using Monte Carlo Simulation. 

 Cases (a): 

 

Figure (2): Bi-Elliptic Hohmann transfer from perigee point of initial orbit 

According to the figure (2) we have 

 Delta-V for transfer:  

Using Monte Carlo Simulation to determine altitude of point (C)     (apogee radius of the orbit 2) 

o At point A 

     
√    √

      

       
 

   
          For orbit (1) (7) 
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√    √

      

       

   
          For orbit (2)  (8) 

     |         |             (9) 

o At point C 

     
√    √

      

       

   
           For orbit (2) (10) 

     
√    √

      

       

   
           For orbit (3) (11) 

     |         |              (12) 

o At point B 

     
√    √

      

       

   
           For orbit (3) (13) 

     
√    √

      

       

   
           For orbit (4) (14) 

     |         |              (15) 

The total delta-V requirement for this Bi-elliptic Hohmann transfer is  

        |   |  |   |  |   |             (16) 

 The time of flight 

The semi-major axis of the transfer ellipse is 

    
 

 
(       )         (17)    

    
 

 
(       )         (18) 

  
  

√ 
    

 
  

  

√ 
    

 
           (19) 

The time of flight for this Bi-elliptic Hohmann transfer is 

                  
 

 
 T (sec)    (20) 

 Cases (b) 

 

Figure (3): Bi-Elliptic Hohmann transfer from perigee point of initial orbit 

According to the figure (3) we have 



  ISSN 2394-7349 

International Journal of Novel Research in Engineering and Science 
Vol. 4, Issue 1, pp: (27-35), Month: March 2017 - August 2017, Available at: www.noveltyjournals.com 

 

Page | 31 
Novelty Journals 

 

 Delta-V for transfer  

Using Monte Carlo Simulation to determine altitude of point (C)     (apogee radius of the orbit 2) 

o At point A 

     
√    √

      

       

   
          For orbit (1)  (21) 

     
√    √

      
       

   
          For orbit (2)  (22) 

     |         |             (23) 

o At point C 

     
√    √

      
       

   
           For orbit (2)  (24) 

     
√    √

      
       

   
           For orbit (3)  (25) 

     |         |              (26) 

o At point B 

     
√    √

      
       

   
           For orbit (3) (27) 

     
√    √

      

       

   
           For orbit (4) (28) 

     |         |              (29) 

The total delta-V requirement for this Bi-elliptic Hohmann transfer is  

        |   |  |   |  |   |             (30) 

 The time of flight 

The semi-major axis of the transfer ellipse is 

    
 

 
                  (31)  

    
 

 
                  (32) 

  
  

√ 
    

 
  

  

√ 
    

 
           (33) 

The time of flight for this Bi-elliptic Hohmann transfer is 

                  
 

 
 T (sec)   (34) 

4.2 One Tangent Burn transfer: 

The major drawback to the Hohmann transfer is the long flight time. The bi-elliptic takes even longer. To reduce time of 

flight, we must select a trajectory using a shorter path with higher velocities. The fastest possible path would involve a Δv; 

approaching infinity, but that’s not practical. Thus, we must select a trajectory that reduces time of flight at the expense of 

an acceptable increase in Δv. One solution is the one-tangent bum. As the name implies, a one-tangent burn has one 

tangential bum and one non-tangential bum.  
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This method reduces the transfer time of the Hohmann techniques but increases Δv requirements [11]. Note that we must 

know the transfer orbit’s true anomaly (semi-major axis, or eccentricity) to locate the non-tangential burn. Figure (4) 

shows the situation of transfer from elliptical orbit (initial) to elliptical orbit (final) by using one tangent burn and Monte 

Carlo simulation. 

 

Fig. (4): One tangent burn transfer 

According to the figure (4) we have 

 Input 

o Orbit (1) initial 

rp1 (perigee radius of orbit (1)) 

ra1 (apogee radius of orbit (1)) 

o Orbit (4) final 

rp2 (perigee radius of orbit (2)) 

ra2 (apogee radius of orbit (2)) 

μ (Gravitational parameter) = 3.986012 x 105 km3/sec2 

 Steps for calculation [7]. 

Using Monte Carlo Simulation to determine          

Not that                    

  
        

      
       (35) 

   
   

   
       (36) 

Eccentricity and semi major axis of transfer orbit are  

        
   

           
     (37)  

            
   

        
     (38) 

 Delta-V for transfer  

Compute the velocities  

o At point a 

     
√    √

      

       

   
          For orbit (1)                  (39)  
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           √
    

   
 

 

      
          For orbit (3) (40) 

     |                |             (41) 

o At point b 

   
       

 
      (42) 

   
               

  

                    
     (43) 

     √(
    

  
 

 

  
)            For orbit (2)  (44) 

           √(
    

  
 

 

      
)           For orbit (3) (45) 

            
                     

                        
   (46) 

    √      
              

                                          (47) 

The total delta-V requirement for this transfer is  

        |   |  |   |                            (48) 

 The time of flight 

       
                    

                        
    (49) 

       √
      

 

 
 {                                               } (50) 

Because this transfer starts at periapsis, so E0=0o. The transfer doesn’t pass perigee, so K must equal zero 

        √
      

 

 
 {                   }  (51) 

5.    NUMERICAL RESULTS 

The transfer is initiated by firing the spacecraft engine at low Earth orbit in order to accelerate it so that it will follow the 

elliptical orbit; this adds energy to the spacecraft’s orbit. When the spacecraft has reached transfer orbit, its orbital speed 

(and hence its orbital energy) must be increased again in order to change the elliptic orbit to the final orbit. In Bi-Elliptic 

Hohmann transfer we will this transfer by three tangent impulses but in one tangent burn transfer we will this transfer by 

two impulses the first impulse is tangent and the second impulse is non-tangent: 

According Valado D. A., 2001 "Fundamentals of Astrodynamics and Application" [9], solved example at chapter 5 point 

5.3 page 292. We compared between this data and Monte Carlo Simulation to solve Bi-elliptic Hohmann transfer in table 

(1) and solve One-Tangent Burn transfer in table (2) 

4.3 Bi-Elliptic Hohmann Transfer by Using Monte Carlo Simulation: 

Table (1): Variation between the default calculations and Monte Carlo Simulation for Bi-Elliptic Hohmann transfers 

 Initial Alt. (km) Final Alt. (km) 
Transfer 

Alt. (km) 

ΔV 

(km/sec) 
Ttrans (hour) 

Transfer to Geosynchronous 

By default 191.34411 35781.35 47836 4.076 21.944 

Monte Carlo 191.34411 35781.35 35791.35 3.93543 17.22561 

Transfer to the moon 

By default 191.34411 376310 503873 3.904 593.919 
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Monte Carlo 191.34411 376310 605923 3.86961 722.94293 

Transfer to high altitude 

By default 622 98622 203622 4.0285 135.79677 

Monte Carlo 622 98622 245622 4.01931 168.65486 

4.4 One-Tangent Burn Transfer by Using Monte Carlo Simulation: 

Table (2): Variation between the default calculations and Monte Carlo Simulation for One-tangent burn transfers 

 Initial Alt. (km) 
Final Alt. 

(km) 

True anomaly 

transfer 
ΔV (km/sec) Ttrans (hour) 

Transfer to Geosynchronous 

By default 191.34411 35781.35 160˚ 4.699 3.457 

Monte Carlo 191.34411 35781.35 178.9575˚ 3.93763 5.12620 

Transfer to the moon 

By default 191.34411 376310 175˚ 4.099 83.061 

Monte Carlo 191.34411 376310 178.9575 3.97236 109.13704 

Transfer to high altitude 

By default 622 98622 160˚ 5.05983 9.79605 

Monte Carlo 622 98622 178.9575˚ 4.04973 17.57563 

4.5 Comparison of Coplanar Orbital Transfers (Bi-Elliptic Hohmann Transfer and One-Tangent Burn Transfer) by 

Using Monte Carlo Simulation: 

The table (3) presents results of the trade-off between change in velocity and time of flight for different types of orbital 

changes (One- tangent burn transfer using Monte Carlo Simulation and Bi-Elliptic Hohmann transfer using Monte Carlo 

Simulation). Recognize that the initial and final orbits are circular, whereas the transfer orbits are elliptical, with perigee 

and apogee values as shown. 

Table (3): Comparison of Coplanar Orbital Transfers using Monte Carlo 

 Initial Alt. (km) Final Alt. (km) 
Transfer orbit 

(degree),(km) 

ΔV 

(km/sec) 
Ttrans (hour) 

Transfer to Geosynchronous 

One-tangent 191.34411 35781.35 υ trans =160˚ 4.699 3.457 

Bi-Elliptic 191.34411 35781.35 Alt. = 47836 4.076 21.944 

Transfer to the moon 

One-tangent 191.34411 376310 υ trans =175˚ 4.099 83.061 

Bi-Elliptic 191.34411 376310 Alt. = 503873 3.904 593.919 

Using Monte Carlo Simulation 

Transfer to Geosynchronous 

One tangent 191.34411 35781.35 υ trans = 178.9575 3.938 5.126 

Bi-Elliptic 191.34411 35781.35 Alt. = 35791.35 3.93543 17.226 

Transfer to the moon 

One-tangent 191.34411 376310 υ trans = 178.96 3.972 109.137 

Bi-Elliptic 191.34411 376310 Alt. = 605923 3.870 722.943 

6.    CONCLUSION 

One tangent Burn: as the name implies, a one-tangent burn has one tangential burn and one non-tangential burn. This 

method reduces the transfer time of the Hohmann techniques but increases ΔV requirements. 

According the calculations in table (1), Bi-Elliptic Hohmann Transfer by Using Monte Carlo Simulation we found that in 

the transfer to Geosynchronous the ΔV and time of flight for transfer decreased and in transfer to the moon the ΔV 

decreased but the time of flight for transfer increased and in the last case also the same which the ΔV decreased but the 

time of flight for transfer increased. 
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According the calculations in table (2), One-Tangent Burn Transfer by Using Monte Carlo Simulation we found that the 

ΔV for transfer decreased but the time of flight for transfer increased. 

According the calculations in table (3), the transformation of spacecraft to Geosynchronous the three impulse (bi-elliptic 

transfer) is more economical compare with one tangent burn. Consequently less fuel is needed to be carried out on the 

spacecraft in case that the spacecraft initially is injected on the higher altitude (transfer to Geosynchronous) but the time 

of flight is the middle of the range of times. 

The transformation of spacecraft to the moon the Bi-elliptic Hohmann transfer (three impulses) is optimum compare with 

one tangent burn transfer but the time of flight for this transfer is larger than one tangent burn. One tangent burn is the 

largest ΔV but the time of flight is the least one. One tangent burn is the fastest method which take less time of flight 

compare with and Bi-elliptic Hohmann transfer. 
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